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AbstracL Many solitary wave solutions of nonlinear partial differential equations can be 
written as a polynomial in two elementary functions which satisfy a projcctive (hence 
linearkable) Riccati system. Fmm thal property. we deduce a method for building 
these solutions by determining only a finite number of coefficients. Tlis method is much 
shorter and obtains more solutions than the one which consists of summing a perturbation 
series built from exponential solutions of the linearized equation. We handle several 
examples. For the HCnon-Heiles Hamiltonian syslem, we obtain several exact solutions; 
one of them defines a new solitary wave Solution for a coupled system of Bouuineq 
and nonlinear Schdinger equations. For a third order dispersive equation with two 
monomial nonlinearities, we isolate all cases where the gcncral solution is single valued. 

1. Introduction 

Solitary wave solutions of a nonlinear partial differential equation (NUDE) E( U) = 0 
in the unknown u ( I , ~ )  are solutions of the ordinary differential equation (ODE) 
obtained by the reduction u ( z , t )  -+ u(E = I - ct). 

There previously existed two main methods for finding such solutions. 
m e  first one ii-jj represents U as the sum of a iayior series in exponentiai 

solutions of the linearized equation. It requires solving the recurrence relation for 
the series coefficients and finding the sum of the ’bylor series; this method is specially 
adapted to solitary wave solutions expressible as geometrical series of exponentials 
and derivatives of such series, like sech, t a n h ,  sech’ = tanh‘, . . . . However, since it 
starts from the linearized equation, it misses by construction any solitary wave whose 
speed c and wavevector k are not linked by the dispersion relation, e.g. 

- 

U = 12’ [l - t anh2(fkc) ]  c = Ik4 2 

a solution (not vanishing at = &CO) of the higher order Korteweg-de Vries equation 

ut + ( u = _ ‘ ~ =  + I O U U = ,  + 5 4  + 1oU3), = o !2! 

whose dispersion relation is c = le4. 
The second consists of looking for U as a polynomial in a variable which satis- 

fies either a Riccati equation [6,7] or a degenerate elliptic equation [8], or a non- 
degenerate elliptic equation [9]; in the case of a Riccati subequation, this method is 
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equivalent to performing the Weiss truncation procedure [lo] in the invariant formu- 
lation of Painlev6 analysis [ll, 121. 

This second method avoids solving a recurrence relation and summing a series, 
operations which can sometimes be difficult. However, some physically interesting 
solutions escape it, e.g. 

R Conte and M Musette 

1 + 2 c o s h k (  
(cosh k( + 2)2 

u = k  c = k4 (3) 

the solitary wave vanishing at E = fco, i.e. the one-soliton of the Kaup-Kupershmidt 
(KK) equation [13,14] 

(4) 45 2 ut + ( U  Izzz + ~ O U U , ,  + -ius + 6 0 ~ ~ ) ~  = 0 .  

The method we present here keeps the idea of a subequation and selects this 
subequation so as not to miss solitary waves of type (3). It consists of representing U 

as a polynomial in two variables which satisfy a system of two coupled Riccati ODES 
of projective type and, consequently, in determining a finite number of coefficients. 

2. Ik.0 elementary solitary waves 

These are the bell-shaped and kink-shaped waves defined by the two functions 

sinh B 
cosh B + p 

r ( s )  = K 
cosh 0 + p 

u ( s )  = 

with p and K constant 

jective Riccati equations [U] 
They represent the general two-parameter solution of the coupled system of pro- 

which admits the first integral 

Variable B is complex, so that the two functions can be trigonometric or hyperbolic. 
Both U and r have simple movable poles (i.e. whose location depends on integration 
constants) in the'B complex plane, except for p = f l ,  in which case U has double 
poles. In order to prevent this change in the pole order of U ,  we choose IC = 

and consider the system 

U' = - U T ,  r' = -r2 - p o u  + 1 modulo 1 - r2 - 2 p o u  + u2 = 0 

with the restriction p i  # 1 .  
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Reciprocally, the general solution of (8) is (5) if pg # 1; otherwise it is 

p ; f = l :  U = f p o ( l  + t anh  $0) I = f(&l + t anh  $9). (9) 

However, the representation of t a n h ( 0 )  in the basis ( u , ~ )  as defined by the 
system (8) is not unique since it is either T with 8 = @ , p 0  = 0 or  I f U with 
0 = 2 0  + constant and po arbitrary; indeed, the function T ( 0 )  = 1(0) f a(@) 
satisfies the Riccati equation 

po arbitrary: T ( 0 ) = ~ ( 0 ) f u ( B )  T’=i (1-T2) .  (10) 

Elimination of either U or I between (8) provides 

6 ’ 2  = UZ(1 - 2 p 0 u  + 2) U” = u ( 2 2  - 3p,u + 1)  (11) 

which is a degenerate elliptic equation, and 

T” + 3TT‘ + I3 - T = 0. (12) 

Equations (11) and (12) are linearizable by the transformation U = l/$, T = @ / @  

+” - $ + Po = 0 $’” - Q = 0. (13) 

In the following, we sometimes denote for brevity U and I as sechm and t anhm 
!‘r.!&fieb’ 2nd tznh fcsP‘bp! Tegppptive!y) la the - 1) 4 n, A I  7- 

3. Method for finding solitary wave solutions 

This consists of finding, if they exist, such solitary wave solutions as polynomials 
in the two functions U ana I. Tnese two functions are evaiuatea at a point 0 = 
e(.$), 8’ # 0. The class of equations to which the method applies is made of the 
NLPDE E ( u )  = 0 polynomial in U and its derivatives. This is not a strong restriction 
since, e.g. the sine-Gordon equation 

uzt = sin U (14) 

is polynomial in the variable U = e“‘. 
The first step consists of determining the polynomial degree P of the solution U 

in (U, T ) ,  which must be a positive integer. Again at this stage, some transformation 
U -+ uD’ may be in order to satisfy this requirement 

In the second step, one defines U as the most general polynomial in U,I with a 
globai degree r“ in ( U ,  7 )  and a degiee one in T 
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then one puts the LHS E ( u )  under the same canonical form by eliminating any 
derivative of (U,.) and any power of 'T higher than one with the definition (8) of 
the projective Riccati system 

R Conte and M Musette 

1 0-1 
E ( u ) = C X E , , , d r ' .  

1=0 j = O  

The next steps, desnibed below, consist of solviig the set of ZQ + 1 determining 
equations 

V j , l  : E j , , b O , ~ ' , c , { c m , , , ) )  = 0 ( p i  - 1)e' # 0 (17) 

the same solution under different IepresentatiQns: 
for the 2 P + 4 unknowns pol  e', c ,  c , , , ,~ ,  in a way which avoids finding several times 

The third step consists of assuming po(pi  - 1) # 0 in the determining equations, 
then solving them; any solution U polynomial in the single function 'T k U must be 
discarded at this stage, in order to ensure a unique representation for each solution, 
for such a solution will be found at the next step. 

The fourth step consists of setting po = 0 in the determining equations (17), then 
solving them; one thus obtains all solutions polynomial in sech and t a n h  . Again, any 
solution U polynomial in the single function 'T f U must be discarded. Some solutions 
found at this fourth step may be the particular case po = 0 of solutions found at the 
thud step. 

Last, among the mathematical solutions found in the above manner, one may 
want to only keep the ones which satisfy some physical requirements, e.g. U - 0 
when c - *ca. 
4. Examples 

4.1. Coupled Boussinesq and nonlinear SchrlMinger sysrem, Henon-Heiles system 
The coupled PDE system 

- &Utt + WU,, + YU'),, + K [I@I']].= = 0 
-iQ, +a,, + UQ = 0 

( W  
(1%) 

with 7 , 6 ,  IC, X real parameters, describes the evolution of modulational instabilities 
in plasmas [16,17]. When one looks for solitary waves [U] defined as 

@ = 4 E ) e  [=+-a (19) ,(Kz-nt) U = U(€) 
where U ,  'p are real functions and C, K, Q real parameters, the first equation (18a) 
can be integrated twice; imposing the physical boundary conditions that U and 'p 

vanish as E - *CO, one finally obtains the relation C + 2h' = 0 and two coupled 
nonlinear ODES 

Xutt + (1 - 46K')u + Xyu' + ~ ' p '  = 0 
'p<( - (n + K')9+ u'p = 0. 
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These ODES, which also come out of the same solitary wave reduction for a 
coupled system of Korteweg-de Vries and nonlinear Schrodinger equations [ 19,201, 
are very well known in Hamiltonian chaos. They indeed identify to the Hamilton 
equations for the Hhon-Heiles (HH) system [21] 

2 H E i (q? , (  + E q z , (  + Clqt + ~ 2 ~ q , ' )  + aEq1qi - 4Pq; = E 
%,E(  + C l P l  - 0s; + €42 = 0 
42,6( + C2P2 + zaq,qz = 0 

(2111) 
( 2 1 4  
(21c) 

in which a ,P ,c l ,  e2,& are real parameters; these equations are invariant under 
p2 + -q2, and the parameter E, taken as unity in the HH system, accounts for the 
sign of nX in the physical equations. 

In order to apply the method described in section 3, one could express that q1 
and q2, assumed polynomial in ( U ,  T ) ,  satisfy the system (21b) and (2%). For three 
reasons, this is not what should be done. 
(a) The invariance by parity on q2 implies that the system written for (q,, q;) is also 

polynomial; then, the assumption q2 polynomial in (CT, T )  could miss solutions 
where the variable qz evaluates to a polynomial which is not the square of a 
polynomial in ( U ,  T ) .  

(b) For such a simple system, where elimination of either field is immediate, only one 
polynomial assumption should be made, either on q1 or on q i ,  again to avoid 
missing some solutions not polynomial in both variables; note that the assumption 
q1 polynomial implies q; polynomial, but not conversely. 

(c) The joint assumption ( ql ,  q2)  polynomial leads to too many subcases, where 
the polynomial degrees are (2,Z) , ( 2 , l )  , (2,O) as will be seen below, while the 
consideration of q1 oniy ieads IO a singie case of poiynomiai degree. 
The elimination of q2 between systems (Zla), (21b) and (Zlb),  (Zlc) leads re- 

spectively to one equation Ea(ql, E) = 0 of order three depending on the energy 
E, and one equation E4(q1) = 0 of order four independent of E. Then the linear 
combination E3 - ZE, factorizes out ql,(<, and the quotient is particularly simple 

41,CCCE + ( sa - -  2P)q,ql,CC - Z(a + P)q:,C - %Pq3 
+ (cl + 4~2)q1 , ( (  + ( 6 ~ ~ 1  - 4 P ~ z ) q t  + 4 ~ 1 ~ 2 q 1  + 4aE = 0. (22) 

Although this ODE, first obtained in the particular case c1 = c2 = 0 [22], contains 
some extraneous solutions as compared with those of the HH system, it does not 
rAlm:l L+-- -..A., ,,T +La- :" +L. In"ln nn nYtmnPn..l ..,.I :*I aPn.nn $,.- - 

" L  L.l%,lll, 111 L'1* ac11DG L L l P L  I." C*L.(LLl*"Ua yu1J"u"""1 " C ~ 1 C C  IU, q1 

solution of (22) will he found. Moreover, the extraneous solutions q1 of polynomial 
type are quite easy to filter out: indeed, in such a case the HH system implies not 
only that qi is polynomial, as seen from ( 2 1 b ) ,  but also that q2 is polynomial, for 
the polynomial factorization of qi can only contain squares, due to the Hamiltonian 
invariant (2 la) .  A necessary filter, to be applied after obtaining solutions for (22), is 

Let us make a last important remark before undertaking the computation The 
ODE (22) can also be viewed as the stationary reduction (z, 1 )  + T of a conservative 

WIIIaU, &U" IIIU.,,. 

then the m!!C!ition that the s ! p m  mot af + q q i  - ,Rq: be a pn!ywmia!. 

PDE 

ut + (L,, + ( S a  - 2P)VUm - 2 ( a  + P ) u ~  - YCX~U') , ,  = 0 (23) 
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written here in the particular case c1 = c2 = 0 ,  for which important results are 
already known. The only values of for which equation (23) has an infinite number of 
conservation law are [23] (-1, -6,  -16), corresponding respectively to the Sawada- 
Kotera [24] (SK), higher-order Korteweg-de Vries [25] (KdVS) and Kaup-Kupershmidt 
[13,14] (KK) equations. Considering the more general reduction (z,t) 3 x - ct of 
PDE (23) only adds a term -cql to the LHS of (22) and allows to check some already 
known solitary wave solutions of (23). 

'Ib summarize this introduction, let us handle at the same time the HH system 
( 2 l a b c )  and the solitary waves of PDE (23), by considering the single fourth order 
ODE (22) including the additional term -cql on its LHS. 

At the first step, if q1 has a global degree P in (U, . ) ,  then q,,tE(f  has degree 
P + 4, qlql , ( (  and qt E have degree 2P + 2,  and q; has degree 3 P ;  the only 
possibility for P is P ='2. 

In the second step, we look for solutions q1 under the form ( U ) ,  restricted for 
simplicity to 0' = constant = k and constant coefficients cj,,; for simplicity again, let 
us restrict q1 to q1 = U=, where U, which is physically the field of the potential form 
of the conservative equation (23), is defined as 

R Conte and M Musette 

U = k(cooB + clou(B) + c o l r ( S ) )  B = k ( x -  c t ) .  (24) 
One the!! bnilrls tbP tlup!ve eqnatier?.. fer the (mnstant) meEden!s coo, cia, cui Z!!d 

(25) 

(26) 
(27) 

parameters p o ,  c ,  k .  Equation Eo,o = 0 provida the value for the energy 

E = - ( c  1 - 4clc2)k2co0 - - ( 3 a c l  1 - 2 p c 2 ) k  4 2  C O O  + ~ P k ' C ~ o .  5 

E5,I = 20c1,o($aPct,o - 6 + 2 ( 2 a  - P)co,l + ~ P C ; , , )  = 0 

ES,o 2 0 ( ( 2 a -  P ) ( ~ t , o  + ~ i , i )  + a P C o , i ( C : , o  + kcZg,i) - 6 ~ 4 1 )  = 0 

4a 2a 
The highest degree determining equations are 

and they yield five possible leading behaviours 

(C1,o3co,1) = ( 0 , 3 / a )  (0 , -6 /P)  ( f 3 / 2 a 7 3 / 2 a )  

(?3!P;-3! ,P)  
(28) 

. \ ~ \  ( f ( 3 ! 2 a  + 3 / , B ) , 3 ! 2 a  - 3/01. 
We discard the third and fourth leading behaviours, for U would only depend on 

At the third step, p o ( p i  - 1) # 0, one finds two solutions which we label with an 
r 7 U. 

m to indicate their dependence on 'modified' hyperbolic functions, i.e. po arbitrary 

4 2  c = k  - c 1  
a + c 1 k - 2 s 1  2 

U =  - k [ 3 r - ( 1 - - p i + ~ ~ ~ k - ~ ) B ]  3 
S a  4 
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At the fourth step, go = 0,  one finds again the two above solutions in the 
particular case p0 = 0, plus two solutions for arbitrary e oI 

(3P  - 2 a ) ( P +  2")(C2 - c1)[(2a + P ) C l  + Pc21 
4 4 a  + P ) 2  

+ 
k 
P 

c = --(16k4 - c2)  1 

Po = 0 U = -- [6r  - 2(1 + i ~ ~ k - ~ ) 8 ]  (HH2) : 

a 

P 

plus three SOlUtiOflS which exist Only in integrable cases (SK, KdVS) 

- -1 c 2 = c 1  p o = o  P 

c ~ , ~  arbitrary 

_ -  (SKI) E cy 

3 k  
U = -r + kc0,,8 

OL 

c = 4(kZ + C1)(4k2 + C ] )  

+ 2 0 a ~ ~ , ~ k ~ [ ( 2 +  aco,o)k2 + c l ]  

P - -6 Po = 0 co,o arbitrary (KdVS1) : - - 
a 

k 
U = - r  + k c o ~ o e  

a 

c = 4(k2 + c2)(4k2 + c1)  
+ 4acO,,k2[20k2 + + 3(c ,  + 4cz)]  

= -6 Po = 0 
P (KdVSZ) : - 
0 

c = 2 1 k 4 - ~ ( 3 c ~ - 1 6 c l c 2 + 4 8 c ~ )  

plus the confluence, which occurs for = -2 ,  of the two solutions HH] and H H ~ .  
This completes the list of solutions of ODE (22) (plus its term -cq,) obtainable 

by our method from the restricting assumption (24); in all of them, k is arbitrary. 
The method of summing a Bylor series would miss the following solutions: SK,,, 

and KK, because of the difficulty of summing the series, HH1, HH2 and KdVS2 because 
c and k are not linked by the dispersion relation. 
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The method of a Riccati subequation would only find solutions polynomial in 
tanh, i.e. would miss solutions SK,, KK, and KdVS2. 

The method of an elliptic subequation would miss the same three solutions; with 
a degenerate elliptic subequation [SI,  it would only find pure sech or pure tanh 
solutions; but, with a non-degenerate elliptic subequation [9] ,  it would find in addition 
the solution obtained from (31a) by replacing r by $ + i c ( f ,  4k4, g3), ga arbitrary, 
where c is the Weierstrass elliptic function. 

In the particular case c, = c2 = 0 ,  those of the above solutions which in addition 
satisfy the condition uz -+ 0 for 0 - 5oa, i.e. c , , ~  = 0 ,  are the one-soliton solutions 
of the three integrable cases, namely (296) for pi  = 4, (31a) and (31b) for co,o = 0 .  

Exact solutions to the Henon-Heiles Hamiltonian system are found by imposing 
on the above list (29)-(31) the two additional conditions: c = 0 and ql,tt -c?q, -pqt 
the square of a polynomial in (a, r ) ;  we have checked that these two conditions are 
sufficient to get rid of all extraneous solutions. As to the exact solutions to the 
coupled PDE system ( l k b ) ,  they are given by imposing these two conditions, plus the 
two conditions q1 -+ 0 (i.e. 

'hble 1 gathers the solutions obtained in this way. Solution 1 is the one-soliton 
solution to the pure Boussinesq equation. Solutions 2,4 ,7  to (18) were already 
found by Hase and Satsuma [U],  and later rediscovered by Rao and Kaup [20], who 
!X!!tie!!cd the !hk tc! the HE system. Sn!utic!!! 6 (Po zrhitrqy) i! to a.r hC!EJ!edge 
a new solution to the coupled system (18). 

of the HH system for the values of 

4.2. Zhiber-Shabat equation 

The equation 

= 0 )  and q2 + 0 when E -+ fco. 

These results are an indication for the possible existence of an additional first integral 
and 2 numbered 2 to 5 in table 1. 

U,, + aeu + ale-" + age-'" = o a#O (32) 

includes as particular cases Liouville (a, = a,, = 0 ) ,  sine- (or rather sinh)-Gordon 
(so: a ,  # O , a ,  = 0 )  or Dodd-Bullough-Mikhailov [26] (DBM: a ,  = O,a, # 0 )  
equations. It is polynomial in the variable U = eu 

uuI, - uzu, + au3 + a l u  + a. = 0 .  (33) 

Its reduction ( z , t )  - ( can be integrated once 

- f c u ;  + au3 - 3c1u2 - a l u  - f a o  = 0 C, arbitrary (34) 

and possesses the general two-parameter solution 

linear in the Weierstrass elliptic function p. 
If we look for solutions of (33) with our method, we can only find one-parameter 

soiutions, corresponding to the degeneracj of (3 into a nyperboiic function. iei us 
check it as an example. With the simplifying assumption 8' = k and c ~ , ~  constant, 
we take 

U = k2(c2,,u2 + c,,,uT) + k(c,,,U + co,lT) + eo,,, (36) 
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and find two leading behaviours 

R Conte and M Musette 

(c,,1,c2,0) = ( 0 , W a )  ( k c l a ,  C / O ) .  

The first one yields the solution 

2 2 2  U = -ck U + c,,, po = 0 a 
ac; , ,  + alto,, + a ,  = o 
4ckZc,,,  - 3ac& - a, = 0 

while the second one leads to 

(37) 

1 
U = -ck2 2 0  I(. f U)' - 11 + c,,, p, arbitrary ( 3 9 4  

ac3,,, + alco,o + a ,  = o 
ck2c,,,  - 3ac;,, - a l  = 0 

(394 
( 3 9 4  

i.e. a solution identical to the first one. 
In the linearizable Liouville case al  = a, = 0, coefficient c,,, is zero and 

( c ,  k )  arbitrary. In all other cases, coefficient c,,,  is non-zero and characterizes the 
vacuum state U, = log c , , ~ ;  a direct linearization of (32) about U = U, provides the 
dispersion relation 

4ck2 = ( I C , , ,  - a,.;,; - 2aoc;i (40) 

and the determining equation (3&) is simply a linear combination of the vacuum 
equation (386) and the dispersion relation (40). 

The solitary wave U - U, satisfies the boundaly condition U - U, - 0 when 
[ + &m. In the two particular cases SG and DBM, one gets the one-soliton 

I 
U = - C  2 Q,O [3tanh2(f3) - 11. 

4.3. Dispersive equafion with two monomial nonlinearifies 

The generalized Korteweg-de Vries equation 

U ,  + (a + PU')U'UZ + SU,,, = 0 4376 # 0 (43)  

has been encountered in plasma physics, wave phenomena and astrophysics for y = 1 
(Zabusky [27]),  y = f (Schamel [28]), y = '2 (Chandrasekhar [29]). The reduction 
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( I , * )  -* E = I - cl can be integrated twice to yield, after the change of function 
U = U' and with the restriction 7 # -i,-2, -4, 

27' 2 (7 + l)(Y + 2)u3 (27 t + 2) 
u4 - c uz-(117) 

1 
-uz---U 6 c 2  + Q P 

- Cz"2-(2/') = 0 .  (44) 
Due to the E translational invariance, any particular non-constant solution depends 

on one arbitrary constant Eo and represents the general solution. 
According to a classical result (see, e.g., Hille [30, ch HI), the general solution 

of (44) is single valued iff the equation is of Briot-Bouquet type, i.e. U: equal to a 
polynomial of degree three or four in U. This occurs only for values of (7, C,, C,) 
equal to (l,arbitrary,arbitrary), (f,arbitrary,O), (2,0,arbitrary), (arbitraly,O,O), 
i.e. precisely the cases of physical merest, plus the obvious case C, = C, = 0 
(Hereman and Takaoka [5]). In all four cases, which can evidently be treated as just 
one case, the general solution of (44) is elliptic, degenerate or not (see e.g. Wadati 
[31] in the case y = 1). The first case is the only one allowing both C, and C, to be 
arbitrary, and this proves that the reduction ( I ,  1) + of the modified Korteweg-de 
Vries equation has a single valued general solution. 

Particular solutions polynomial in ( a ,  T )  are single valued and therefore exist 
only when (44) is of Briot-Bouquet type. They have degree P = 1 and they are 
found without computation, just by identifying (44) and (11); they exist only when the 
polynomial of degree four has a multiple zero, in which case they are either linear in 
a for one double and two simple zeros, or proportional to (1 k t a n h )  for two double 
zeros. 

For instance, for 7 = 4, one finds three solutions: the one of lhgare and Chakra- 
barty [32] 

1601' = -- c3 
c arbitrary k 2  = - 6 7 5 p c  

a second one depending on one arbitrary parameter X 

1 1 
y = -  

2 cl = -37500 - 3 ) 3 ( X  + 1) 

c, = 0 : U = 25 [ A  - 3 f 2 d m a ]  
5 P  

2 2  
750 

X(X  - 3 ) 3 ( X  t 3)2 c = - (A2 - 9) 
2 4 d  

3356P36 
lez = - 

( A  - I), 
= X(X - 3) 

and 
2a c, = 0 : = -- [1* tanh(O)] 1 

2 5 P  
2'0.2 

y = -  C,=O 

Po = 0 k' = - 1601' 
3356p36 ' 

c = -- 
750 
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The third one is the common value of the first and second ones for pi  = 1, ie. 
x = -1. 

The method of summation of exponentials has provided some [5,33] of these 
solutions after lengthy computations, but it has failed to provide any solution with 
P d P i  - 1) # 0. 
4.4. Dispersive equation with m e  monomial nonlineardy 

Let us set a = 0 in the previous example, (43). Then, the twice integrated form 
(44) remains valid, with 7 # -l,-i. The requirement that (44) with a = 0 be of 
Briot-Bouquet type provides, in addition to the four previous cases, (7, C,, C,) = 
(-2,O,arbitrary) which corresponds to the Ermakov [34] or Pinney [35] equation, 
which is linearizable, see next example. The invariance of (44) under U - -U for 
a = 0, C, = 0, C2 = 0 suggests considering the transformed equation in v = u2 = 
U27 

This equation is of Briot-Bouquet type only for five values of ( 7 ,  C,, C,), equal 
to: (+,arbitrary; arbitrary); (;,arbitrary,O); (-$,arbitrary,O); (l,O,arbitrary); and 
(arbitrary,O,O). 

The first case is the only one allowing both C, and C, to be arbitrary, and this 
proves that the reduction ( z , t )  - [ of the Korteweg-de Vnes 1361 equation has a 
single valued general solution. 

In the second case, v is a Weierstrass elliptic function. In the third case, v is a 
degenerate Jacobi elliptic function proportional to either secbm 0 or ( 1  f tanh e), 
depending on C,. As to the last two cases, they have already been found by consid- 
ering the form (44). 

4.5. Ermakov-Pinney equation 

After the reduction ( z , t )  - [, one integration and the setting of C, to zero, (43) 
reads for a = O,7 = -2 

6Ut,  - CU - = 0 (49) 

U,, - a2U + b a V 3  = 0 .  (50) 

which we rewrite for convenience as 

This defines the Ermakov [34] or Pinney [35] equation. Its fust integral (44), 
written in the variable U = U-, 

Lu2 8 ,  - i a 2 u 2  - c2u3 - $b2u4 = 0 (51) 

can be identified to equation ( l l ) ,  linearizable into (13); this defines the general 
solution of Ermakov-Pinney equation as 

U = [A + Be2', + Ce-2",] 'I2 
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where A, B and C are integration constants. 
Many proofs of this result have been given, among them two straightfonvard 

proofs vin PainlevB analysis 137). Let us use our method to give another proof of the 
linearizability of Ermakov-Pinney equation, by considering this equation written in 
the variable U = U - 2  

(53) 1 - -  a ~ ~ < (  + % U ;  - a2u2 + bZu4 = 0 .  

Looking for 

we find three leading behaviours 

( C 1 , 0 ~ C O , 1 )  = (O?EO1/2b) 

2 = €12 = 1 

of which the thud one must be discarded. 

( ~ 0 ' / 2 b ,  0 )  ( ~ B ' / 4 b ,  e'b"f4b) 
(55 )  

Let us only solve the first case. At the third step, i.e. po(p i  - 1) # 0, one finds 
nothing. At the fourth step, i.e. po = 0, one finds the single solution 

U = (B'/Zb)tanh(B) + po = 0 (56) 

in which b-'B' satisfies (53), and co,o the Riccati equation 

c ; , ~  - 2 6 4 ,  - (B"/B')c,,, + (1/2b)B" = 0 .  (57) 

Dking for B the particular solution 0 = a((  - El), we obtain 

U - 2  = U = ( a f 2 b )  ( tanh(a( (  - E l ) )  - tanh(a(( - F a ) ) ]  (58) 

an expression which depends on two arbitrary constants ( I ,  ta  and is the general 
solution of (53). It is also equal to 

where +l and +a are two linearly independent solutions of +(( - aa+ = 0 ,  and W 
their constant Wronskian. 

Other examples can be found in Musette and a n t e  (381, in particular solitary 
wave solutions associated with the nonlinear Schrodinger equation and the Boussinesq 
equation. 
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5. Conclusion 

The introduction of a projective Riccati system as subequations of a nonlinear ODE of 
order greater than one provides particular solutions by the determination of a finite 
number of coefficients. This prevents the drawback of having to sum entire series in 
exponential solutions of the linearized equation. With the simplifying assumption of 
constant coefficients, one finds as solutions polynomials in two elementary bell-shaped 
and kink-shaped functions; this covers the large majority of physically interesting 
solitary waves. Without this simplifying assumption, one finds more solutions, and 
one can even find the general solution of some ODES. 

Physics sometimes provides systems of differential equations which cannot be 
converted to polynomial form, or for which one is unable to find polynomial forms 
yielding an integer value for the global degree P in (U,.). In such a case, which 
reflects multivaluedness intrinsic to the equation, our method, based on single val- 
uedness assumptions, is of no help. One could of course devise some asymptotic 
expansion, but this would bring us back to situations where an infinite set of coeffi- 
cients must be determined. Such an interesting system, where no solution is known 
in closed form although numerical evidence indicates a physically acceptable solution, 
is provided by a Langmuir plasma [39]. 

The present method can evidently be generalized to any subequation, which must 
be defined in its canonical reduced form [7], e.g. the Riccati or elliptic equations. 
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